Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Strontium manganese diselenite, $\mathrm{SrMn}\left(\mathrm{SeO}_{3}\right)_{2}$, containing unusual MnO_{5+1} polyhedra

Magnus G. Johnston and William T. A. Harrison*
Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

Received 14 January 2002
Accepted 21 January 2002
Online 13 February 2002
Hydrothermally prepared $\operatorname{SrMn}\left(\mathrm{SeO}_{3}\right)_{2}$ contains infinite chains of vertex-sharing irregular MnO_{5+1} polyhedra [mean $\mathrm{Mn}-\mathrm{O} 2.226$ (3) \AA], which are fused into layers via pyramidal SeO_{3} groups [mean $\mathrm{Se}-\mathrm{O} 1.698$ (3) Å]. Nine-coordinate Sr^{2+} cations [mean $\mathrm{Sr}-\mathrm{O} 2.715$ (4) \AA] complete the layered structure.

Comment

$\mathrm{SrMn}\left(\mathrm{SeO}_{3}\right)_{2}$ (Fig. 1) is isostructural with the synthetic compound $\mathrm{SrZn}\left(\mathrm{SeO}_{3}\right)_{2}$ (Johnston \& Harrison, 2001), but with subtly different divalent metal coordination. In $\mathrm{Sr} \mathrm{Zn}\left(\mathrm{SeO}_{3}\right)_{2}$, the Zn atom is coordinated by six O atoms in an unusual $4+2$ coordination, described as bicapped tetrahedral. In the title compound, the Mn atom has six O -atom neighbours, with one $\mathrm{Mn}-\mathrm{O}$ bond distinctly longer than the other five. The average $\mathrm{Mn}-\mathrm{O}$ separation for the five near-neighbour O atoms ($2.180 \AA$) is in very good agreement with the ionic radius sum for high-spin $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{O}^{2-}(2.19 \AA$; Shannon, 1976). However, the bond-valence sum (BVS; Brown, 1996) of 1.76 for Mn is much lower than the expected value of 2.00 . If the more distant O atom $[\mathrm{Mn}-\mathrm{O} 2.452$ (3) \AA] is considered, the Mn BVS rises to 1.93 . This MnO_{5+1} coordination is so grossly distorted from octahedral as to be better regarded as irregular; the nominal trans $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ bond angles are 144.6, 149.0 and 166.9°. The variance of the cis $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$ angles (mean 91.2°), as quantified by the method of Robinson et al. (1971), has the exceptionally large value of 239.5 .

Both of the $\left[\mathrm{SeO}_{3}\right]^{2-}$ groups in $\mathrm{SrMn}\left(\mathrm{SeO}_{3}\right)_{2}$ adopt the usual pyramidal coordination (Hawthorne et al., 1987; Harrison, 1999), with BVS(Se1) $=4.08$ and BVS $(\mathrm{Se} 2)=4.06$ (expected value 4.00). The Sr^{2+} cation has irregular ninefold coordination by oxygen [$\left.\begin{array}{lll}\text { mean } & \mathrm{Sr}-\mathrm{O} & 2.715 \AA \\ \AA\end{array}\right]$, with $\operatorname{BVS}(\mathrm{Sr})=1.98$ (expected value 2.00). The next-nearest O atom is some $3.99 \AA$ distant. As well as their Mn and Se neighbours, all of the O atoms are bonded to one or more Sr^{2+} cations. The average $\mathrm{Sr}-\mathrm{O}$ separation in $\mathrm{SrZn}\left(\mathrm{SeO}_{3}\right)_{2}$ is 2.700 (5) Å.

The overall structure consists of infinite chains of vertexlinked MnO_{5+1} groups orientated along the [100] direction. The SeO_{3} units are fused on to these chains via edge sharing. The SeO_{3} pyramids containing Se 1 link adjacent chains in the [001] direction, forming sheets perpendicular to [010], while the SeO_{3} pyramids containing Se 2 are grafted on to the chains. The interlayer Sr^{2+} cations bind adjacent sheets in the [100] direction and provide charge balancing. In a [100] projection (Fig. 2), there appear to be small channels present at $(y=0$, $z=0$) and symmetry-equivalent locations. These are probably associated with the $\mathrm{Se}^{\mathrm{IV}}$ lone pairs and do not represent voids accessible by other chemical species.

Other manganese selenites exhibit distorted $\mathrm{Mn}^{\mathrm{II}} \mathrm{O}_{6}$ polyhedra. In $\mathrm{Mn}_{3}\left(\mathrm{SeO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Johnston et al., 2002), one of the MnO_{6} groups is extremely distorted, with four short bonds ($\mathrm{Mn}-\mathrm{O}<2.24 \AA$) and two longer bonds ($\mathrm{Mn}-\mathrm{O}>2.39 \AA$) in a cis configuration. Similarly, in the mixed-valence phase $\mathrm{Mn}^{\mathrm{II}} \mathrm{Mn}_{2}^{\mathrm{III}} \mathrm{O}\left(\mathrm{SeO}_{3}\right)_{3}$ (Wildner, 1994), the divalent species is described as an MnO_{4+2} grouping, with four short and two long $\mathrm{Mn}-\mathrm{O}$ bonds. These distorted $\mathrm{Mn}^{\mathrm{II}}$ environments can be partly attributed to the inter-polyhedral connectivity of the MnO_{6} and SeO_{3} groups.

Figure 1
A fragment of $\mathrm{SrMn}\left(\mathrm{SeO}_{3}\right)_{2}$ with 50% probability displacement ellipsoids, showing the edge sharing of the SeO_{3} and MnO_{5+1} moieties. The symmetry codes are as in Table 1.

Figure 2
A packing diagram for $\operatorname{SrMn}\left(\mathrm{SeO}_{3}\right)_{2}$ viewed down [100], in polyhedral representation. The SeO_{3} pyramids (light shading) are represented by $\mathrm{SeO}_{3} E$ tetrahedra, where the dummy atom E, geometrically placed $1.0 \AA$ from Se and indicated by a small sphere, represents the $\mathrm{Se}^{\mathrm{IV}}$ lone pair. Sr^{2+} cations are represented by spheres of arbitrary radii.

inorganic compounds

Experimental

$\mathrm{SrCO}_{3}(0.154 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.3956 \mathrm{~g}, 2 \mathrm{mmol}), 0.5 \mathrm{M}$ $\mathrm{H}_{2} \mathrm{SeO}_{3}(6 \mathrm{ml})$ and $1 \mathrm{MLiOH}(4.5 \mathrm{ml})$, at a pre-oven pH of 8.5 , were hydrothermally reacted in a 23 ml -capacity sealed Teflon-lined steel bomb in an oven at 453 K . The bomb was removed after 67 h and cooled over a period of 3 h . Upon opening, the bomb contained a clear solution, unidentified white and brown powders, and colourless rod-shaped single crystals of the title compound. The products were recovered by vacuum filtration, and washed with water and then acetone.

Crystal data
$\mathrm{SrMn}\left(\mathrm{SeO}_{3}\right)_{2}$
$M_{r}=396.48$
Monoclinic, $P 2_{1} / n$
$a=4.4432$ (2) \AA 。
$b=14.8002$ (7) \AA
$c=9.5955$ (5) A
$\beta=94.072(1)^{\circ}$
$V=629.41(5) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=4.184 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3396 \\
& \text { reflections } \\
& \theta=2.5-32.5^{\circ} \\
& \mu=22.01 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Rod, colourless } \\
& 0.34 \times 0.05 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD area-

detector diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.048, T_{\text {max }}=0.640$
7110 measured reflections

2273 independent reflections
1869 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=32.5^{\circ}$
$h=-6 \rightarrow 6$
$k=-22 \rightarrow 21$
$l=-13 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.090$
$S=1.01$
2273 reflections
91 parameters

The highest difference peak is $0.83 \AA$ from Se 2 and the deepest difference hole is $0.95 \AA$ from Sr1.

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ},{ }^{\circ}$).

Sr1-O3	2.461 (4)	Mn1-O6	2.174 (3)
$\mathrm{Sr} 1-\mathrm{O} 2{ }^{\text {i }}$	2.558 (3)	$\mathrm{Mn} 1-\mathrm{O} 3$	2.231 (3)
Sr1-O5 ${ }^{\text {ii }}$	2.607 (3)	$\mathrm{Mn} 1-\mathrm{O} 2$	2.235 (4)
$\mathrm{Sr} 1-\mathrm{O} 5^{\text {i }}$	2.632 (3)	$\mathrm{Mn} 1-\mathrm{O} 4$	2.452 (3)
$\mathrm{Sr} 1-\mathrm{O}{ }^{\text {iii }}$	2.704 (3)	Se1-O3	1.687 (4)
$\mathrm{Sr} 1-\mathrm{O} 2^{\text {iv }}$	2.721 (3)	Se1-O1	1.690 (3)
$\mathrm{Sr} 1-\mathrm{O} 1^{\text {iv }}$	2.792 (4)	$\mathrm{Se} 1-\mathrm{O} 2$	1.711 (3)
$\mathrm{Sr} 1-\mathrm{O} 4^{\text {i }}$	2.927 (4)	$\mathrm{Se} 2-\mathrm{O} 6$	1.683 (3)
$\mathrm{Sr} 1-\mathrm{O} 6^{\text {iii }}$	3.033 (4)	Se2-O5	1.693 (3)
$\mathrm{Mn} 1-\mathrm{O} 1^{\text {iv }}$	2.104 (4)	$\mathrm{Se} 2-\mathrm{O} 4$	1.725 (3)
$\mathrm{Mn} 1-\mathrm{O} 4^{\text {v }}$	2.159 (3)		
$\mathrm{O} 1^{\mathrm{iv}}-\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{v}}$	107.57 (13)	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 4$	82.45 (12)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Mn} 1-\mathrm{O} 6$	109.38 (15)	O3-Se1-O1	102.95 (18)
$\mathrm{O} 4^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 6$	84.05 (12)	$\mathrm{O} 3-\mathrm{Se} 1-\mathrm{O} 2$	94.75 (17)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Mn} 1-\mathrm{O} 3$	83.70 (14)	$\mathrm{O} 1-\mathrm{Se} 1-\mathrm{O} 2$	99.03 (17)
$\mathrm{O} 4^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 3$	91.19 (13)	$\mathrm{O} 6-\mathrm{Se} 2-\mathrm{O} 5$	100.39 (18)
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{O} 3$	166.89 (15)	O6-Se2-O4	96.42 (15)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Mn} 1-\mathrm{O} 2$	144.61 (13)	O5-Se2-O4	100.58 (17)
$\mathrm{O} 4^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 2$	94.43 (13)	$\mathrm{Se} 1-\mathrm{O} 1-\mathrm{Mn} 1{ }^{\text {vi }}$	123.14 (17)
$\mathrm{O} 6-\mathrm{Mn} 1-\mathrm{O} 2$	100.00 (14)	$\mathrm{Se} 1-\mathrm{O} 2-\mathrm{Mn} 1$	97.93 (16)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 2$	68.11 (13)	Se1-O3-Mn1	98.81 (16)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Mn} 1-\mathrm{O} 4$	91.48 (12)	$\mathrm{Se} 2-\mathrm{O} 4-\mathrm{Mn} 1{ }^{\text {vii }}$	115.94 (16)
$\mathrm{O} 4{ }^{\mathrm{v}}-\mathrm{Mn} 1-\mathrm{O} 4$	148.98 (15)	$\mathrm{Se} 2-\mathrm{O} 4-\mathrm{Mn} 1$	92.58 (13)
O6-Mn1-O4	66.32 (11)	$\mathrm{Mn} 1{ }^{\text {vii }}-\mathrm{O} 4-\mathrm{Mn} 1$	148.98 (15)
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 4$	115.60 (12)	Se2-O6-Mn1	104.32 (16)

Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv)
$x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2} ;$ (v) $1+x, y, z ;($ vi $) \frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z ;$ (vii) $x-1, y, z$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1190). Services for accessing these data are described at the back of the journal.

References

Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (1999). ATOMS for Windows. Version 5.0.7. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Harrison, W. T. A. (1999). Acta Cryst. C55, 1980-1983.
Hawthorne, F. C., Groat, L. A. \& Erat, T. S. (1987). Acta Cryst. C43, 2042-2044.
Johnston, M. G. \& Harrison, W. T. A. (2001). Inorg. Chem. 40, 6518-6520.
Johnston, M. G., Rao, C. N. R., Choudhury, A. \& Harrison, W. T. A. (2002). Unpublished work.
Robinson, K., Gibbs, G. V. \& Ribbe, P. H. (1971). Science, 172, 567-570.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wildner, M. (1994). J. Solid State Chem. 113, 252-256.

