ISSN 0108-2701

Strontium manganese diselenite, SrMn(SeO₃)₂, containing unusual MnO₅₊₁ polyhedra

Magnus G. Johnston and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland Correspondence e-mail: w.harrison@abdn.ac.uk

Received 14 January 2002 Accepted 21 January 2002 Online 13 February 2002

Hydrothermally prepared $SrMn(SeO_3)_2$ contains infinite chains of vertex-sharing irregular MnO_{5+1} polyhedra [mean Mn-O 2.226 (3) Å], which are fused into layers *via* pyramidal SeO₃ groups [mean Se-O 1.698 (3) Å]. Nine-coordinate Sr²⁺ cations [mean Sr-O 2.715 (4) Å] complete the layered structure.

Comment

SrMn(SeO₃)₂ (Fig. 1) is isostructural with the synthetic compound SrZn(SeO₃)₂ (Johnston & Harrison, 2001), but with subtly different divalent metal coordination. In $SrZn(SeO_3)_2$, the Zn atom is coordinated by six O atoms in an unusual 4+2 coordination, described as bicapped tetrahedral. In the title compound, the Mn atom has six O-atom neighbours, with one Mn–O bond distinctly longer than the other five. The average Mn-O separation for the five near-neighbour O atoms (2.180 Å) is in very good agreement with the ionic radius sum for high-spin Mn^{II} and O²⁻ (2.19 Å; Shannon, 1976). However, the bond-valence sum (BVS; Brown, 1996) of 1.76 for Mn is much lower than the expected value of 2.00. If the more distant O atom [Mn-O 2.452 (3) Å] is considered, the Mn BVS rises to 1.93. This MnO_{5+1} coordination is so grossly distorted from octahedral as to be better regarded as irregular; the nominal trans O-Mn-O bond angles are 144.6, 149.0 and 166.9°. The variance of the cis O-Mn-O angles (mean 91.2°), as quantified by the method of Robinson *et al.* (1971), has the exceptionally large value of 239.5.

Both of the $[SeO_3]^{2-}$ groups in SrMn(SeO₃)₂ adopt the usual pyramidal coordination (Hawthorne *et al.*, 1987; Harrison, 1999), with BVS(Se1) = 4.08 and BVS(Se2) = 4.06 (expected value 4.00). The Sr²⁺ cation has irregular ninefold coordination by oxygen [mean Sr-O 2.715 Å], with BVS(Sr) = 1.98 (expected value 2.00). The next-nearest O atom is some 3.99 Å distant. As well as their Mn and Se neighbours, all of the O atoms are bonded to one or more Sr²⁺ cations. The average Sr-O separation in SrZn(SeO₃)₂ is 2.700 (5) Å. The overall structure consists of infinite chains of vertexlinked MnO₅₊₁ groups orientated along the [100] direction. The SeO₃ units are fused on to these chains *via* edge sharing. The SeO₃ pyramids containing Se1 link adjacent chains in the [001] direction, forming sheets perpendicular to [010], while the SeO₃ pyramids containing Se2 are grafted on to the chains. The interlayer Sr²⁺ cations bind adjacent sheets in the [100] direction and provide charge balancing. In a [100] projection (Fig. 2), there appear to be small channels present at (y = 0, z = 0) and symmetry-equivalent locations. These are probably associated with the Se^{IV} lone pairs and do not represent voids accessible by other chemical species.

Other manganese selenites exhibit distorted $Mn^{II}O_6$ polyhedra. In $Mn_3(SeO_3)_3 \cdot H_2O$ (Johnston *et al.*, 2002), one of the MnO_6 groups is extremely distorted, with four short bonds (Mn-O < 2.24 Å) and two longer bonds (Mn-O > 2.39 Å) in a *cis* configuration. Similarly, in the mixed-valence phase $Mn^{II}Mn_2^{III}O(SeO_3)_3$ (Wildner, 1994), the divalent species is described as an MnO_{4+2} grouping, with four short and two long Mn-O bonds. These distorted Mn^{II} environments can be partly attributed to the inter-polyhedral connectivity of the MnO_6 and SeO_3 groups.

Figure 1

A fragment of $SrMn(SeO_3)_2$ with 50% probability displacement ellipsoids, showing the edge sharing of the SeO₃ and MnO_{5+1} moieties. The symmetry codes are as in Table 1.

Figure 2

A packing diagram for SrMn(SeO₃)₂ viewed down [100], in polyhedral representation. The SeO₃ pyramids (light shading) are represented by SeO₃*E* tetrahedra, where the dummy atom *E*, geometrically placed 1.0 Å from Se and indicated by a small sphere, represents the Se^{IV} lone pair. Sr²⁺ cations are represented by spheres of arbitrary radii.

Experimental

 $SrCO_3$ (0.154 g, 1 mmol), $MnCl_2 \cdot 4H_2O$ (0.3956 g, 2 mmol), 0.5 *M* H_2SeO_3 (6 ml) and 1 *M* LiOH (4.5 ml), at a pre-oven pH of 8.5, were hydrothermally reacted in a 23 ml-capacity sealed Teflon-lined steel bomb in an oven at 453 K. The bomb was removed after 67 h and cooled over a period of 3 h. Upon opening, the bomb contained a clear solution, unidentified white and brown powders, and colourless rod-shaped single crystals of the title compound. The products were recovered by vacuum filtration, and washed with water and then acetone.

Crystal data

SrMn(SeO ₃) ₂	$D_x = 4.184 \text{ Mg m}^{-3}$
$M_r = 396.48$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3396
a = 4.4432 (2) Å	reflections
b = 14.8002 (7) Å	$\theta = 2.5 - 32.5^{\circ}$
c = 9.5955(5) Å	$\mu = 22.01 \text{ mm}^{-1}$
$\beta = 94.072 \ (1)^{\circ}$	T = 298 (2) K
$V = 629.41 (5) \text{ Å}^3$	Rod, colourless
Z = 4	$0.34 \times 0.05 \times 0.02 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area- detector diffractometer	2273 independent reflections 1869 reflections with $I > 2\sigma(I)$
ωscans	$R_{\rm int} = 0.050$
Absorption correction: multi-scan	$\theta_{\rm max} = 32.5^{\circ}$
(SADABS; Bruker, 1999)	$h = -6 \rightarrow 6$
$T_{\min} = 0.048, \ T_{\max} = 0.640$	$k = -22 \rightarrow 21$
7110 measured reflections	$l = -13 \rightarrow 14$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0535P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.090$	$(\Delta/\sigma)_{\rm max} = 0.001$
S = 1.01	$\Delta \rho_{\rm max} = 2.37 \text{ e} \text{ Å}^{-3}$
2273 reflections	$\Delta \rho_{\rm min} = -1.83 \text{ e } \text{\AA}^{-3}$
91 parameters	

The highest difference peak is 0.83 Å from Se2 and the deepest difference hole is 0.95 Å from Sr1.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SMART*; data reduction: *SMART*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *ATOMS* (Dowty, 1999); software used to prepare material for publication: *SHELXL*97.

Table 1

Selected geometric parameters (Å, °).

Sr1-O3	2.461 (4)	Mn1-O6	2.174 (3)
Sr1-O2 ⁱ	2.558 (3)	Mn1-O3	2.231 (3)
Sr1-O5 ⁱⁱ	2.607 (3)	Mn1-O2	2.235 (4)
Sr1-O5 ⁱ	2.632 (3)	Mn1-O4	2.452 (3)
Sr1-O5 ⁱⁱⁱ	2.704 (3)	Se1-O3	1.687 (4)
Sr1-O2 ^{iv}	2.721 (3)	Se1-O1	1.690 (3)
Sr1-O1 ^{iv}	2.792 (4)	Se1-O2	1.711 (3)
Sr1-O4 ⁱ	2.927 (4)	Se2-O6	1.683 (3)
Sr1-O6 ⁱⁱⁱ	3.033 (4)	Se2-O5	1.693 (3)
Mn1-O1 ^{iv}	2.104 (4)	Se2-O4	1.725 (3)
$Mn1-O4^{v}$	2.159 (3)		
O1 ^{iv} -Mn1-O4 ^v	107.57 (13)	O2-Mn1-O4	82.45 (12)
O1 ^{iv} -Mn1-O6	109.38 (15)	O3-Se1-O1	102.95 (18)
$O4^v - Mn1 - O6$	84.05 (12)	O3-Se1-O2	94.75 (17)
O1 ^{iv} -Mn1-O3	83.70 (14)	O1-Se1-O2	99.03 (17)
$O4^{v}-Mn1-O3$	91.19 (13)	O6-Se2-O5	100.39 (18)
O6-Mn1-O3	166.89 (15)	O6-Se2-O4	96.42 (15)
O1 ^{iv} -Mn1-O2	144.61 (13)	O5-Se2-O4	100.58 (17)
$O4^{v}-Mn1-O2$	94.43 (13)	Se1-O1-Mn1 ^{vi}	123.14 (17)
O6-Mn1-O2	100.00 (14)	Se1-O2-Mn1	97.93 (16)
O3-Mn1-O2	68.11 (13)	Se1-O3-Mn1	98.81 (16)
O1 ^{iv} -Mn1-O4	91.48 (12)	Se2-O4-Mn1vii	115.94 (16)
$O4^{v}-Mn1-O4$	148.98 (15)	Se2-O4-Mn1	92.58 (13)
O6-Mn1-O4	66.32 (11)	Mn1vii-O4-Mn1	148.98 (15)
O3-Mn1-O4	115.60 (12)	Se2-O6-Mn1	104.32 (16)

Symmetry codes: (i) $\frac{1}{2} + x, \frac{3}{2} - y, z - \frac{1}{2}$; (ii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iii) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) $x - \frac{1}{2}, \frac{3}{2} - y, z - \frac{1}{2}$; (v) 1 + x, y, z; (vi) $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z$; (vii) x - 1, y, z.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1190). Services for accessing these data are described at the back of the journal.

References

- Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
- Bruker (1999). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dowty, E. (1999). ATOMS for Windows. Version 5.0.7. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Harrison, W. T. A. (1999). Acta Cryst. C55, 1980-1983.
- Hawthorne, F. C., Groat, L. A. & Erat, T. S. (1987). Acta Cryst. C43, 2042-2044.
- Johnston, M. G. & Harrison, W. T. A. (2001). Inorg. Chem. 40, 6518-6520.
- Johnston, M. G., Rao, C. N. R., Choudhury, A. & Harrison, W. T. A. (2002). Unpublished work.
- Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Wildner, M. (1994). J. Solid State Chem. 113, 252-256.